张邻晶讲师

硕导

植被遥感:基于遥感大数据的多尺度植被参数提取

  • 13018070079
  • zhanglinjing@sdust.edu.cn

职称/职务:讲师

博导/硕导:硕导

电子邮箱:zhanglinjing@sdust.edu.cn

办公地址:青岛市黄岛区前湾港路579号山东科技大学J9楼502室


2014.09-2018.06,武汉大学 测绘遥感信息工程国家重点实验室,摄影测量与遥感专业,博士;

2018.09-至今,山东科技大学,beat365官方网站,讲师。

植被遥感:基于遥感大数据的多尺度植被参数提取

《遥感原理与应用》,《高光谱遥感》,《定量与高光谱遥感》

1. 国家自然科学基金,主持;

2. 山东省自然科学基金,主持;

3. 武汉大学测绘遥感信息工程国家重点实验室开放研究基金,主持;

4. 自然资源部海洋测绘重点实验室开放研究基金,主持。

1. 山东省科学技术进步奖一等奖,多源遥感高精度信息提取关键技术与应用,本人位次:13/15;

2. 青岛市科学技术一等奖,高分辨率卫星数据智能化处理关键技术及应用,本人位次:9/15。

代表性论文1,Linjing Zhang, Xiaoxue Zhang*, Zhenfeng Shao, Wenhao Jiang, and Huimin Gao. Integrating Sentinel-1 and 2 with LiDAR data to estimate aboveground biomass of subtropical forests in northeast Guangdong, China. International Journal of Digital Earth, 2023, 16 (1): 158-182;

代表性论文2,Linjing Zhang, Huimin Gao*, Xiaoxue Zhang. Combining Radiative Transfer Model and Regression Algorithms for Estimating Aboveground Biomass of Grassland in West Ujimqin, China. Remote Sensing, 2023, 15(11): 2918;

代表性论文3,Linjing Zhang, Xinran Yin, Yaru Wang, Jing Chen. Aboveground biomass mapping in semi-arid forests by inte-grating airborne LiDAR with Sentinel-1 and Sentinel-2 time series data. Remote Sensing, 2024, 16(17), 3241;

代表性论文4,Zhenfeng Shao, Linjing Zhang*, and Lei Wang. Stacked Sparse Autoencoder Modeling Using the Synergy of Airborne LiDAR and Satellite Optical and SAR Data to Map Forest Above-ground Biomass. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(12): 5569-5582;

代表性论文5,Linjing Zhang, Zhenfeng Shao*, Jianchen Liu, and Qimin Cheng. Deep Learning Based Retrieval of Forest Aboveground Biomass from Combined LiDAR and Landsat 8 Data. Remote Sensing, 2019, 11(12): 1459;

代表性论文6,Zhen Zhang, Tao Jiang, Chenxi Liu, Linjing Zhang*. An effective classification method for hyperspectral image with very high resolution based on encoder-decoder architecture. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14:1509-1519;

代表性论文7, Zhenfeng Shao and Linjing Zhang*. Estimating Forest Aboveground Biomass by Combining Optical and SAR Data: A Case Study in Genhe, Inner Mongolia, China.Sensors, 2016,16(6):834;

代表性论文8,Xinliang Pan, Tao Jiang, Zhen Zhang, Baikai Sui, Chenxi Liu and Linjing Zhang*. A New Method for Extracting Laver Culture Carriers Based on Inaccurate Supervised Classification with FCN-CRF. Journal of Marine Science and Engineering, 2020, 8(4):274;

代表性论文9, Linjing Zhang, Zhenfeng Shao*, and Chunyuan Diao. (2015). Synergistic retrieval model of forest biomass using the integration of optical and microwave remote sensing. Journal of Applied Remote Sensing, 2015, 9: 096069;

代表性论文10,Linjing Zhang, Qimin Cheng*, and Congmin Li. (2015). Improved model for estimating the biomass of Populus euphratica forest using the integration of spectral and textural features from the Chinese high-resolution remote sensing satellite GaoFen-1. Journal of Applied Remote Sensing, 9: 096010, 2015。

专利1,邵振锋,张邻晶. 光学反射模型与微波散射模型协同的森林生物量反演方法. 专利号:ZL 2014 1 0799878.6,2017年2月22日;

专利2, 邵振锋,张邻晶. 一种城市地上生物量光学微波协同反演方法及系统. 专利号:ZL 2019 1 0046622.0,2022年12月02日.